Global radial solutions in classical Keller–Segel model of chemotaxis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global existence of classical solutions to a combined chemotaxis–haptotaxis model with logistic source

a r t i c l e i n f o a b s t r a c t This paper deals with a mathematical model of cancer invasion of tissue. The model consists of a system of reaction–diffusion-taxis partial differential equations describing interactions between cancer cells, matrix degrading enzymes, and the host tissue. In two space dimensions, we prove global existence and uniqueness of classical solutions to this model ...

متن کامل

Global Existence of Classical Solutions to a Cancer Invasion Model

This paper deals with a chemotaxis-haptotaxis model of cancer invasion of tissue. The model consists of three reactiondiffusion-taxis partial differential equations describing interactions between cancer cells, matrix degrading enzymes, and the host tissue. The equation for cell density includes two bounded nonlinear density-dependent chemotactic and haptotactic sensitivity functions. In the ab...

متن کامل

Classical solutions and pattern formation for a volume filling chemotaxis model.

We establish the global existence of classical solutions to a generalized chemotaxis model, which includes the volume filling effect expressed through a nonlinear squeezing probability. This novel choice of squeezing probability reflects the elastic properties of cells. Necessary and sufficient conditions for spatial pattern formation are given and the underlying bifurcations are analyzed. In n...

متن کامل

Global Solutions for a Hyperbolic-parabolic System of Chemotaxis

We study a hyperbolic-parabolic model of chemotaxis in dimensions one and two. In particular, we prove the global existence of classical solutions in certain dissipation regimes.

متن کامل

A coupled chemotaxis-fluid model: Global existence

We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis–Navier–Stokes system in two space dimensions, we obtain global existence for large data. In three space di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2019

ISSN: 0022-0396

DOI: 10.1016/j.jde.2019.06.024